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1.1 Introduction

The fields of micromechanics and nanomechanics are concerned

with the fine-scale mechanical behavior of materials. A micro-

or nanoscale point of view allows for a more refined treatment

of the material constituent behavior compared with traditional

macroscale approaches. In this chapter, we will focus on a special

type of materials, referred to as phononic materials, whereby the

microdynamical behavior (or similarly, the nanodynamical behavior)

can be tailored with remarkable precision. In doing so, we are

able to alter the constitutive material behavior not only under

static loading conditions as in other branches of micro- (and nano-)

mechanics but also under low- and high-frequency dynamic loading

conditions. This direct exposure, and access, to the inherent
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dynamical properties of materials has vigorously chartered a new

direction in the entire field of mechanics, at a multitude of scales,

and has already begun to impact numerous applications ranging

from vibration control [1, 2], through subwavelength sound focusing

[3, 4] and cloaking [5, 6], to reducing the thermal conductivity of

semiconductors [7, 8] (a discussion of applications and references is

provided in Refs. [9] and [10], and a recent special journal issue on

the topic assembles some of the latest advances in the field [11].)

In this chapter, we present the basic theory of wave propagation

in phononic materials focusing, for ease of exposition, on one-

dimensional (1D) layered rod models. First we provide a back-

ground on the topic followed by an overview of the transfer matrix

method, in conjunction with Bloch’s theorem, for the exact analytical

treatment of simple 1D phononic materials. In Section 1.2, we

limit our attention to linear, conservative elastic media and an

analysis based on the assumption of infinitesimal deformation. We

then provide a detailed treatment of damping (Section 1.3) and

geometric nonlinearity, i.e., finite deformation (Section 1.4). For each

case, we start by examining the wave propagation characteristics

in a homogenous medium (which is later used to represent the

motion characteristics in a single layer of a periodically layered 1D

phononic material), and then we extend our analysis to the overall

1D phononic material. As in the undamped problem, the treatment

we present for the inclusion of damping is based on an exact

analytical derivation. For the more complex nonlinear problem,

however, we present a linearized approximate solution. Upon

completing the derivations for each of the damped and nonlinear

cases, we investigate the effects of damping and nonlinearity on the

wave motion characteristics as a function of, respectively, damping

intensity and amplitude of motion.

1.2 Wave Propagation in 1D Phononic Materials

1.2.1 Background

Phononic materials are elastic materials with prescribed phonon

wave propagation properties. While the term “phonon” is formally
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used in the physical sciences to describe vibration states in

condensed matter at the atomic scale, in the present context, we

use it to broadly describe elastic wave propagation modes. Like

other types of materials, a phononic material has local intrinsic

properties and is therefore mathematically treated as a medium

that is spatially extended to infinity. At the most basic level, such a

medium can be homogeneous and geometrically uniform. However,

in order to realize rich and unique dynamical properties, some form

of non-homogeneity and/or non-uniformity is needed and may be

introduced in an ordered or disordered manner. In this chapter,

we will focus on the former case, where phononic materials are

constructed from a repeated array of identical unit cells.

There are two types of phononic materials of interest to us:

phononic crystals and periodic acoustic metamaterials. Phononic

crystals [1, 2, 3, 7, 8, 11, 12, 13] utilize elastic wave scattering at

the unit cell interfaces to enable a mechanism of Bragg scattering

where coherent interferences shape the overall wave propagation

characteristics. Periodic acoustic (or elastic) metamaterials [4–6,

14], on the other hand, exhibit local resonances that directly alter

the overall wave propagation characteristics from the baseline

behavior pertaining to periodicity (a phenomenon often referred to

as hybridization).

Bloch’s theorem [15] provides the underlying mathematical

framework for obtaining the fundamental wave propagation charac-

teristics in phononic materials. Through this theorem, it is possible

to obtain a relationship between frequency and wavenumber (or

wave vector) whose graphical representation is referred to as the

frequency band structure. An important feature of the frequency

band structure in phononic materials, regardless of type, is the

possibility of the existence of band gaps. A band gap is a frequency

range in which no wave propagation is effectively permitted (see

for example Refs. 16 and 17 for a discussion on the nature of

band-gap opening mechanisms). In engineering applications, both

band gaps and bands (frequency ranges where wave propagation

is permitted) are widely utilized (see for example Refs. 18 and

19 on the utilization of band features for sound collimation and

phase control, respectively). In a phononic crystal, a band gap can

open only at frequencies corresponding to wavelengths on the order
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of the size of the unit cell. In periodic acoustic metamaterials,

however, a band gap may appear at lower frequencies, i.e., in the sub-

wavelength regime. This is particularly useful as it significantly eases

design restrictions on unit cell size. With careful size scaling and

choice of the constituent material phases and their relative spatial

distribution within the periodic unit cell, phononic materials can be

designed and optimized for maximum band-gap width to midgap

frequency ratio [20, 21] or for target dispersion band characteristics.

1.2.2 Transfer Matrix Method

We begin our dynamic analysis of a phononic material with the

statement of the equation of motion. As mentioned earlier, we

restrict ourselves to a 1D model, e.g., a rod, for which the equation of

motion is

σ,x + f = ρu,tt , (1.1)

where σ = σ (x, t), f = f (x, t), ρ = ρ(x), and u = u(x, t)

denote the stress, external body force (per unit length), material

density, and displacement, respectively. As indicated, the value of

each of these quantities is dependent upon the position x within the

1D medium and, with the exception of the material density, time t.

Differentiation with respect to position and/or time is denoted by

the appropriate subscript following a quantity. For example, (·),x

indicates differentiation with respect to position while (·),tt signifies

double differentiation with respect to time. In Eq. (1.1), we set f = 0

(external body forces are absent for free wave motion) and assume

a linearly elastic material for which

σ = E u,x , (1.2)

where E = E (x) is the material Young’s modulus. Using Eq. (1.2),

Eq. (1.1) in the absence of body forces becomes

E u,xx = ρu,tt . (1.3)

We may use Eq. (1.3) to study the propagation of waves in various

1D media. In particular, if we have a homogeneous, linearly elastic

1D rod of infinite extent (having no boundaries at which waves may

reflect), then we may apply a plane wave solution of the form

u(x, t) = Aei(κx−ωt), (1.4)
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Figure 1.1 Continuous model of a two-phased 1D phononic crystal

(periodic rod).

where A is the wave amplitude, κ is the wavenumber, ω is the

temporal frequency of the traveling wave, and i = √−1. Substituting

Eq. (1.4) into Eq. (1.3) provides the linear dispersion relation

Eκ2 = ρω2. (1.5)

This approach may also be applied to heterogeneous media

provided the heterogeneity is periodic. In this case, we refer to Eq.

(1.4) as Bloch’s theorem, and it suffices to analyze only a single unit

cell representing the unique segment that is repeated to generate

the periodic medium and to apply periodic boundary conditions

to this portion. In Fig. 1.1, we present a simple bi-material model

of a 1D phononic crystal in the form of a layered periodic rod

(where the unit cell is enclosed in a red dashed box). We denote the

spatial lattice spacing of the 1D phononic crystal by the constant

a. In order to analyze wave propagation in this periodic rod, we

may choose from several techniques, including the finite difference,

finite element, and transfer matrix methods. However, of these

techniques, only the transfer matrix method offers an exact solution;

the finite difference and finite element methods provide numerical

approximations. Due to this advantage, we choose in this chapter to

study the dynamical characteristics of 1D phononic crystals using

the transfer matrix method, which we describe below (for more

details, see Hussein et al. [21]). We note that our analysis can also

be applied to a periodic acoustic metamaterial.

For a periodic medium composed of two or more material layers,

the transfer matrix method uses the continuity conditions that exist

between layers to relate displacement and stress values from one

layer to the next. If the displacement and stress states at the bound-

ary of one layer are known, then the corresponding states at the
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opposite boundary (shared by the current and subsequent layers)

can be derived from a simple matrix operation. The product of the

repeated application of matrix operations for each layer across a unit

cell yields a system matrix that relates the states at opposite ends of

the entire unit cell. This system matrix is then utilized in conjunction

with Bloch’s theorem to obtain an eigenvalue problem whose

solution generates the dispersion curves of the 1D phononic crystal.

The mathematical derivation of this method is provided below.

For an arbitrary homogeneous layer j in the unit cell, the

associated material properties, which are constant, are denoted as

E ( j) and ρ( j). The longitudinal velocity in layer j is therefore c( j) =√
E ( j)/ρ( j). The layer is bordered by layer j − 1 on the left and layer

j +1 on the right. Given the thickness of an arbitrary layer of the unit

cell is d( j), the cell length is a = ∑n
j=1 d( j) for a unit cell with n layers.

Following this notation, the solution to Eq. (1.3) is formed from the

superposition of forward (transmitted) and backward (reflected)

traveling waves with a harmonic time dependence,

u(x, t) = [A( j)
+ eiκ( j) x + A( j)

− e−iκ( j) x ]e−iωt, (1.6)

where κ ( j) = ω/c( j) is the layer wavenumber. We can write the

spatial components of Eqs. (1.2) and (1.6) in compact form as[
u(x)

σ (x)

]
=

[
1 1

iZ ( j) −iZ ( j)

][
A( j)

+ eiκ( j) x

A( j)
− e−iκ( j) x

]
= B j

[
A( j)

+ eiκ( j) x

A( j)
− e−iκ( j) x

]
,

(1.7)

where Z ( j) = E ( j)κ ( j). As mentioned earlier, there are two

conditions that must be satisfied at the layer interfaces: (1) the

continuity of displacement and (2) the continuity of stress. This

allows us to substitute the relation x ( j)
R = x ( j)

L + d( j) (where x ( j)
R and

x ( j)
L denote the position of the right and left boundary, respectively,

of layer j) into Eq. (1.7) and thus relate the displacement and stress

at x ( j)
L to those at x ( j)

R ,⎡
⎣ u

(
x ( j)

R

)
σ

(
x ( j)

R

)
⎤
⎦ = B j

[
eiκ( j)d( j)

0

0 e−iκ( j)d( j)

][
A( j)

+ eiκ( j) x ( j)
L

A( j)
− e−iκ( j) x ( j)

L

]

= B j D j

[
A( j)

+ eiκ( j) x ( j)
L

A( j)
− e−iκ( j) x ( j)

L

]
. (1.8)
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By setting x = x ( j)
L in Eq. (1.7), we may rewrite Eq. (1.8) as⎡

⎣ u
(

x ( j)
R

)
σ

(
x ( j)

R

)
⎤
⎦ = B j D j B−1

j

⎡
⎣ u

(
x ( j)

L

)
σ

(
x ( j)

L

)
⎤
⎦ = T j

⎡
⎣ u

(
x ( j)

L

)
σ

(
x ( j)

L

)
⎤
⎦ , (1.9)

where T j , the transfer matrix for layer j , has the expanded form

T j =
[

cos(κ ( j)d( j)) (1/Z ( j)) sin(κ ( j)d( j))

−Z ( j) sin(κ ( j)d( j)) cos(κ ( j)d( j))

]
. (1.10)

As previously stated, Eq. (1.9) relates the displacement and stress

at x ( j)
L to those at x ( j)

R of the same layer j . However, since the

construction of the transfer matrix is valid for any layer and x ( j)
L ≡

x ( j−1)
R , the result in Eq. (1.9) can be extended recursively across

several layers. In the interest of brevity, let y(·) = [u(·) σ (·)]T, thus,

y(x1
R ) = T1y(x1

L ) = y(x2
L ),

y(x2
R ) = T2y(x2

L ) = T2T1y(x1
L ) = y(x3

L ),

y(x3
R ) = T3y(x3

L ) = T3T2T1y(x1
L ) = y(x4

L ),

...

y(xn
R ) = TnTn−1 · · · T1y(x1

L ) = Ty(x1
L ). (1.11)

Ultimately, the displacement and stress at the left end of the first

layer (x = x1
L ) in a unit cell are related to those at the right boundary

of the nth layer (x = xn
R ) by the cumulative transfer matrix, T.

Now we turn to Bloch’s theorem, which states that the time-

harmonic response at a given point in a unit cell is the same as that

of the corresponding point in an adjacent unit cell except for a phase

difference of eiκa , where κ is the wavenumber corresponding to the

overall wave propagation across the periodic 1D phononic crystal.

This relation is given by f (x + a) = eiκa f (x), which when applied to

the states of displacement and stress across a unit cell gives

y(xn
R ) = eiκay(x1

L ). (1.12)

Combining Eqs. (1.11) and (1.12) yields the eigenvalue problem

[T − Iγ ]y(x1
L ) = 0, (1.13)

where γ = eiκa . The solution of Eq. (1.13), which appears in complex-

conjugate pairs, provides the dispersion relations κ(ω) for the 1D
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phononic crystal. Real-valued wavenumbers, calculated from γ us-

ing Eq. (1.14), support propagating wave modes, whereas imaginary

wavenumbers, extracted from γ using Eq. (1.15), represent those

modes which decay in space:

κR = 1

a
Re

[
1

i
ln γ

]
, (1.14)

κl = 1

a
Im

[
1

i
ln γ

]
. (1.15)

1.3 Treatment of Damping

Damping is an innate property of materials and structures. Its

consideration in the study of wave propagation is important because

of its association with energy dissipation. We can concisely classify

the sources of damping in phononic materials into three categories,

depending on the type and configuration of the unit cell. These

are: (1) bulk material-level dissipation stemming from deformation

processes (e.g., dissipation due to friction between internal crystal

planes that slip past each other during deformation); (2) dissipation

arising from the presence of interfaces or joints between different

components (e.g., lattice structures consisting of interconnected

beam elements [1, 23]); and (3) dissipation associated with the

presence of a fluid within the periodic structure or in contact with it.

In general, the mechanical deformations that take place at the bulk

material level, or similarly at interfaces or joints, involve microscopic

processes that are not thermodynamically reversible [24]. These

processes account for the dissipation of the oscillation energy in

a manner that fundamentally alters the macroscopic dynamical

characteristics including the shape of the frequency band structure.

Similar yet qualitatively different effects occur due to viscous

dissipation in the presence of a fluid. While the representation of the

inertia and elastic properties of a vibrating structure is adequately

accounted for, finding an appropriate damping model to describe

observed experimental behavior can be a daunting task. This is

primarily due to the difficulty in identifying the state variables

upon which the damping forces depend and in formulating the best
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functional representation once a set of state variables is determined

[25]. A review of established approaches for the treatment of

damping in linear systems is available in Refs. [25] and [26]. As

for wave propagation in damped phononic materials, the reader is

referred to Refs. [27] and [28] and references therein.

1.3.1 Viscously Damped Waves in 1D Homogeneous Media

In Section 1.2.2, we introduced the transfer matrix method as a

means to analyze wave propagation in the disparate layers of a 1D

phononic crystal. These layers were assumed to be linearly elastic

and conservative, that is, no energy is lost as waves propagate within

the layers and through the layer interfaces. On this basis, the relation

κ ( j) = ω/c( j) holds in layer j . However, in actual material systems,

energy is dissipated by a variety of mechanisms as stated above.

It is therefore useful to consider the effects of energy dissipation

(damping) in the underlying transfer matrix formulation.

Due to the diversity and complexity of dissipative mechanisms,

the development of a universal damping model stands as a major

challenge. A rather simple model proposed by Rayleigh [29], one

which we will consider, is the viscous damping model in which the

instantaneous generalized velocity, u,t , is the only relevant state

variable in the determination of the damping force fd [26]. The

consequences for a homogeneous 1D medium, e.g., a rod, is that the

stress is not only related to the strain, u,x , following Hooke’s law, but

also a function of the strain rate, u,xt , involving a constant, η (which,

in essence, represents the viscosity). The constitutive relationship

then becomes

σ = E u,x +ηu,xt . (1.16)

Substitution of Eq. (1.16) into Eq. (1.1) (recall f = 0) yields

the general equation for wave propagation in a viscously damped

homogeneous rod,

E u,xx +ηu,xxt = ρu,tt . (1.17)

This naturally leads to a different relationship between κ and ω

than was stated in Eq. (1.5). To see this, we generalize the temporal

component of Eq. (1.4) to eλt to allow for dissipation in time in
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addition to space [27, 28, 30, 31], that is,

u(x, t) = Aeiκx+λt. (1.18)

Substituting Eq. (1.18) into Eq. (1.17) yields the characteristic

equation

−Eκ2 − ληκ2 = λ2ρ, (1.19)

which, following Cady [30], has the solutions

λ = −ηκ2

2ρ
± iκ

√
E
ρ

−
(

ηκ

2ρ

)2

. (1.20)

The association of Eq. (1.5) with Eq. (1.20) is easily verified in the

absence of dissipation (η = 0) where λ = −iω. In the presence of

dissipation, however, λ is complex and reflects the form suggested

by Hussein [27] and Hussein and Frazier [28]

λ = −ξω ± iωd, (1.21)

where ωd and ξ are the wavenumber-dependent damped wave

frequency and associated damping ratio, respectively.

At present, the value of the viscosity η is undefined. In principle,

any value guaranteeing a positive rate of dissipation is acceptable.

For our treatment of viscously damped homogeneous media, we will

adopt a model considered by Rayleigh [29], and define the viscosity

to be proportional to the elasticity, η = q E , where q is a constant of

proportionality. Thus, Eq. (1.20) becomes

λ = −q Eκ2

2ρ
± iκ

√
E
ρ

−
(

q Eκ

2ρ

)2

= −
(qcκ

2

)
cκ ± icκ

√
1 −

(qcκ
2

)2

, (1.22)

where c = √
E/ρ. Using Eq. (1.21) and with the previously stated

relation ω = cκ , the damped wave frequency and damping ratio may

be extracted from Eq. (1.22) as

ωd(κ ; q) = cκ

√
1 −

(qcκ
2

)2

(1.23)

and

ξ = qcκ
2

. (1.24)

In this section, we considered a homogeneous medium (a rod)

in which κ is the global wavenumber. In the following section, in
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which we consider a heterogeneous, periodically layered rod – a 1D

phononic crystal – we will see the return of the layer wavenumber,

κ ( j).

1.3.2 Viscously Damped Waves in 1D Phononic Materials

As presented, the transfer matrix method is prepared for either

the absence or presence of dissipation; the distinction is made in

the definition of Z ( j) and κ ( j). In general, Z ( j) = κ ( j)(E ( j) + η( j)λ);

however, specific to our earlier prescription for η, Z ( j) = κ ( j) E ( j)(1 +
qλ). Note that this form collapses to the earlier definition of Z ( j)

for the undamped case where η (or q) is set equal to zero. In the

condition of undamped wave propagation, the relationship between

the wavenumber and the frequency has already been presented:

κ ( j) = ω/c( j). A similar relationship between the wavenumber and

the damped wave frequency for layer j can be developed from Eq.

(1.23). Given the quadratic form of Eq. (1.23),

q2[c( j)]4

4
[κ ( j)]4 − [c( j)]2[κ ( j)]2 + ω2

d = 0, (1.25)

we can formulate two complex-conjugate solutions for [κ ( j)]2, from

which we develop the explicit relation

κ ( j) = ± 1

qc( j)

√
2

(
1 ±

√
1 − q2ω2

d

)
. (1.26)

Given the placement of q in the denominator of Eq. (1.26), it is

apparent that the equation is only valid if q has a nonzero value.

Alternatively, q can be set to the zero value (or any positive value)

in Eq. (1.25) without difficulty, and then κ ( j) = ωd/c( j) (ωd ≡ ω in

an undamped system) is readily recovered.

Now we will use Eq. (1.26) and the transfer matrix method to

obtain the dispersion curves of a viscously damped 1D phononic

crystal, in particular, the periodic bi-material rod in Fig. 1.1 (a

similar analysis can be applied to a periodic acoustic metamaterial).

We consider a unit cell with n = 2 and d(1) = d(2). A specific set

of material parameters listed in Table 1.1 provide a reference for

our exposition; these two material phases comprise our example

phononic crystal. We offer a suite of numerical case studies to

illustrate the effects of dissipation. In each case, the damping
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Table 1.1 Phononic crystal properties

ABS polymer ρ(1) = 1040 kg/m3 E (1) = 2.4GPa

Aluminum ρ(2) = 2700 kg/m3 E (2) = 68.9GPa

intensity q is varied to give a good representation of the dissipative

effects. In Fig. 1.2, we show the frequency (non-dimensional)

and damping ratio band structures for this model. Each plot is

divided into positive and negative wavenumber (non-dimensional)

domains representing the propagating and evanescent waves,

respectively. The evanescent wavenumbers are not negative; rather,

they are indicated as such to emphasize their attenuating nature

(which arises from the multiplication of the imaginary part of the

wavenumber with a unit imaginary number).

We observe in Fig. 1.2 that as the damping intensity q increases,

the optical branches drop rapidly while the acoustic branch

experiences relatively little change – the result is a reduction in

the size of the band gap. This behavior is readily explained by the

corresponding band structure of the damping ratio diagram. Higher

branches in the diagram indicate a greater damping ratio and so

the rate at which a mode descends is correlated to its position.

The damping ratio curves evolve in a synchronous manner with the

dissipation intensity; ascending the band diagram accordingly. As

q increases, higher branches in the damping ratio band diagram

meet/exceed unity in part or in entirety (not shown). In these

instances, similar to structural dynamics of finite systems, we assert

that these branches are critically damped or over-damped and that

no propagation is permitted (i.e., the frequency band has collapsed

to zero). It should be noted that for identical levels of prescribed

damping, the band diagrams would appear radically different if the

temporal component of the solution u(x, t) had been prescribed as

e−iωt rather than eλt . In fact, with the assumption λ = −iω, the damp-

ing ratio band diagram would not be defined. As such, Eq. (1.18) in

the context of periodic media may be referred to as the generalized
Bloch’s theorem. Employment of this form allows us to obtain the dis-

persion relation for damped free wave propagation. Should we have

adopted the standard form of the theorem, in which the frequencies

are assumed to be real, we would have obtained a solution for the

propagation of damped waves with prescribed frequencies.
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Figure 1.2 Frequency (a) and damping ratio (b) band structure for a

viscously damped 1D phononic crystal consisting of two layers in the unit

cell. For comparison, the dispersion curves for the undamped problem are

included. Also, corresponding dispersion curves for a statically equivalent

homogenous rod are overlaid.
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1.4 Treatment of Nonlinearity

The majority of investigations of wave motion in elastic solids

are based on linear analysis, that is, linear constitutive laws

and linear strain–displacement relationships are assumed (see

Refs. 32 and 33, and references therein). The incorporation of

nonlinear effects has nevertheless been considered and is receiving

increasing attention because, as in damping, it allows for a more

accurate description of the underlying motion and facilitates the

study of complex dynamical phenomena [34–41]. Also similar to

damping, the effects of nonlinearity on the dispersion of waves

in waveguides could be utilized to enrich the design of materials

and structural components in numerous engineering applications.

Current applications for nonlinear elastic wave propagation studies

include nonlinear vibration analysis [42], dislocation and crack

dynamics analysis [43, 44], geophysical and seismic motion analysis

[45], material characterization and nondestructive evaluation [46,

47] and biomedical imaging [48].

Finite amplitude wave propagation in elastic solids is a subset

among the broader class of nonlinear wave propagation problems.

From a mathematical perspective, a formal treatment of finite

deformation requires the incorporation of an exact nonlinear strain

tensor in setting up the governing equations of motion. As a result,

the emerging analysis permits large and finite strain fields as

opposed to small and infinitesimal strain fields. A large portion

of research on finite amplitude waves considers initially strained

materials (see, for example, the early studies by Truesdell [34]

and Green [35], and Ogden [39] for an extensive discussion on the

topic). Furthermore, analysis of finite-amplitude waves in solids

often involve small parameters or asymptotic expansions (see

Norris [40] for a review). Among the relatively recent works that

focused on finite-amplitude plane waves in materials subjected to

a large static finite deformation include those of Boulanger and

Hayes [49], Boulanger et al. [50] and Destrade and Saccomandi

[51]. Focusing on rods, modeled in one dimension or higher,

many studies considered small but finite amplitude waves for

both incompressible and compressible materials (e.g., [52–56]). Of

particular relevance is a recent study by Zhang and Liu [57] in
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which an exact equation of motion for a rod and an approximate

equation of motion for an Euler-Bernoulli beam were derived

under the condition of finite deformation. In all these studies,

and others in the literature concerned with finite-strain wave

motion in homogeneous media, generally the interest has been in

obtaining spatial/temporal solutions, or solutions at certain physical

limits, rather than complete dispersion relations. In the context of

nonlinear phononic materials, there are several studies that follow

the premise of Bloch analysis. These include investigations utilizing

the method of multiple scales [58, 59], perturbation analysis [60, 61]

and the harmonic balance method [62, 63]. In Ref. [64], nonlinear

wave phenomena in periodic granular chains were examined by

experiments.

In this section, we provide a theoretical treatment of finite-

strain dispersion; first we present an exact analysis for a 1D

homogenous medium (e.g., a homogeneous rod), and we follow

with an approximate analysis of a 1D phononic crystal (e.g., a

periodic rod). In both problems, our approach is not limited by the

amplitude of the traveling wave. Starting with Hamilton’s principle,

we consider axial deformation to represent longitudinal motion. We

derive the equation of motion and the implicit dispersion relation

from which we obtain the explicit frequency versus wavenumber

solution for each of the homogeneous and periodic cases.

1.4.1 Finite-Strain Waves in 1D Homogenous Media

In this section, we derive the equation of motion and the dispersion

relation for elastic wave motion in a homogeneous rod (assuming

slender cross section) as an example of a 1D homogeneous medium.

In our derivation, all terms in the nonlinear strain tensor are

retained and no high order terms emerging from the differentiations

are subsequently neglected. To verify our theoretical approach, we

examine wave propagation in a corresponding finite rod by means of

a standard finite-strain numerical simulation (using finite element

analysis) and compare the response with our derived dispersion

relation. The formulations we develop allow us to examine the effect

of finite deformation on the frequency dispersion curves in rods, or

in the context of 1D plane wave motion in a bulk medium without



March 6, 2013 14:3 PSP Book - 9in x 6in 01-Shaofan-Li-c01

16 Microdynamics of Phononic Materials

consideration of lateral effects. Further details on nonlinear analysis

of homogeneous media are available in Ref. [65].

1.4.1.1 Equation of motion

Introducing 
 as the elastic displacement, the exact complete

Green–Lagrange strain field in a rod is given by

ε = ∂


∂s
+ 1

2

(
∂


∂s

)2

, (1.27)

where the first and second terms on the RHS represent the

linear and nonlinear parts, respectively, and s is the Lagrangian

longitudinal coordinate. The elastic displacement field for the rod,


, is equal to axial displacement, u,


 = u. (1.28)

Using Hamilton’s principle, we write the equation of motion for a

rod under uniaxial stress as∫ t

0

(δT − δU e + δW nc)dt = 0, (1.29)

where T, U e, and Wnc denote kinetic energy, elastic potential

energy and the work done by external nonconservative forces and

moments, respectively, and t denotes time. Neglecting the effects of

lateral inertia and using integration by parts, the variation of elastic

potential energy is

δU e =
∫ l

0

∫
A

(σδε)dA ds, (1.30)

where σ and ε are the axial stress and axial strain, respectively,

and l denotes the length of a portion of the rod. We chose to base

our analysis on the Cauchy stress. The stress–strain relationship is

modeled following Hooke’s law,

σ = E ε, (1.31)

where E is the Young’s modulus. Using Eq. (1.30), and with the aid

of integration by parts, we can now write the variation of elastic

potential energy as

δU e =
∫ l

0

{
1

2
E Ah(h2 − 1)δu′

}
ds, (1.32)
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where u′ = du/ds = u,s and h is an agent variable defined as

h = 1 + u′. (1.33)

The variation of non-conservative forces and moments is given in

terms of the variation of axial deformation, u, and the distributed

external axial load qu ,

δWnc =
∫ l

0

(quδu)ds. (1.34)

The variation of kinetic energy is also obtained using integration by

parts and is given as

δT = −ρ A
∫ l

0

(u,tt δu)ds. (1.35)

Substitution of Eqs. (1.32), (1.34), and (1.35) into Eq. (1.29)

produces the equation of motion and the companion boundary

conditions given in Eqs. (1.36) and (1.37), respectively:∫ t

0

{∫ l

0

(A1δu)ds + (B1δu + B1δu′)
∣∣s=l

s=0

}
dt = 0, (1.36)

(B1 = 0 or u = 0) and (B1 = 0 or u′ = 0). (1.37)

We can now write an exact nonlinear equation of motion of a 1D

rod under finite deformation as

A1 = 0 : ρ Au,tt = 1

2
E A(3h2 − 1)u′′ + qu. (1.38)

The section load, namely the axial force, is

B1 = 1

2
E Ah(h2 − 1) (1.39a)

B1 = 0. (1.39b)

If the axial deformation is infinitesimal, then u′ is small and from Eq.

(1.33), h ≈ 1. Substitution of h = 1 into Eq. (1.38) leads to

A1 = 0 : ρ Au,tt = E Au′′ + qu, (1.40)

which is the equation of motion describing infinitesimal axial

deformation.
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1.4.1.2 Dispersion relation

Using Eq. (1.33), we rewrite Eq. (1.38) as

u,tt −c2u′′ = 1

2
[3c2(u′)2 + c2(u′)3]′, (1.41)

Equation (1.41) is integrable despite it being nonlinear. Differentiat-

ing Eq. (1.41) once with respect to s gives

(u,tt )′ − c2u(3) = 1

2
[3c2(u′)2 + c2(u′)3]′′. (1.42)

Defining u = u′ and τ = ωfint, where ωfin is the frequency of a

traveling wave, Eq. (1.42) becomes

ω2
finu,ττ −c2u′′ = 1

2
[3c2(u)2 + c2(u)3]′′. (1.43)

Defining z = |κ|s + τ , where κ is the wavenumber of a harmonic

wave, we rewrite Eq. (1.43) as

ω2
finu,zz −c2κ2u,zz = 1

2
κ2[3c2(u)2 + c2(u)3],zz (1.44)

where now the explicit dependency on s and τ has been eliminated.

Integrating Eq. (1.44) twice leads to

ω2
finu − c2κ2u = 1

2
κ2[3c2(u)2 + c2(u)3], (1.45)

or

(ω2
fin − c2κ2)u − c2κ2

2
[3u2 + u3] = 0. (1.46)

We note that in our integration of Eq. (1.44) we get nonzero

constants of integration in the form of polynomials in z. Since these

represent secular terms we have set them all equal to zero in light of

our interest in the dispersion relation. Selecting the positive root of

Eq. (1.46) we get

u(z) =
−3 +

√
1 + 8ω2

fin/c2κ2

2
. (1.47)

Since u = u,s , we recognize that u = |κ|u,z and therefore

Eq. (1.47) represents a first-order nonlinear ordinary differential

equation with z and u as the independent and dependent variables,

respectively.
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Now we return to Eq. (1.41) and consider for initial conditions

a sinusoidal displacement field, with amplitude B and a zero phase

in time, and a zero velocity field. Following the change of variables

we have introduced, these initial conditions essentially correspond

to the following restrictions on the u(z) function given in Eq. (1.47):

u(0) = |κ|B, u,z (0) = 0. (1.48)

We note that since z describes a space-time wave phase, the

restrictions given in Eq. (1.48) represent initial conditions on the

wave phase. The importance of these initial conditions is that they

incorporate the effect of the wave amplitude, B , into the finite

deformation dispersion relation. Applying Eq. (1.48) to Eq. (1.47)

allows us to use the latter to solve for ωfin for a given value of κ at

z = 0. Thus we obtain an exact dispersion relation for wave motion

in a rod under finite deformation, which is

ωfin(κ ; B) =
√

2 + 3B|κ| + (Bκ)2

2
ω, (1.49)

where ω is the frequency based on infinitesimal deformation,

ω(κ) = c|κ|. (1.50)

By taking the limit, limB→0 ωfin(κ ; B), in Eq. (1.49) we recover Eq.

(1.50) which is the standard linear dispersion relation for a rod, as

shown by Billingham and King [66].

For demonstration, two amplitude-dependent finite deformation

dispersion curves for an infinite rod based on Eq. (1.49) are

plotted in Fig. 1.3. These dispersion curves provide an exact

fundamental description of how an elastic harmonic wave lo-

cally, and instantaneously, disperses in an infinite rod under

the dynamic condition of amplitude-dependent finite deformation.

Superimposed in the same figure is the dispersion curve based

on infinitesimal deformation, i.e., Eq. (1.50). We observe that the

deviation between a finite deformation curve and the infinitesimal

deformation curve increases with wavenumber, and the effect of

the wave amplitude on this deviation appears to be steady (in the

wavenumber range considered) as B is increased.

In addition, the results from standard finite element simulations

of a finite version of the rod with length L are presented. A

prescribed sinusoidal displacement with frequency ω̂ and amplitude
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Figure 1.3 Frequency dispersion curves for a homogeneous rod [65]. The

finite-strain dispersion relation is based on Eq. (1.49); the infinitesimal

strain dispersion relation is based on Eq. (1.50).

B̂ , i.e., u(L , t) = B̂ sin(ω̂t), was applied to the tip of the rod with

free-free boundary conditions. The finite-deformation finite element

model consisted of 60 piecewise linear elements with equal lengths,

and each node consisted of two degrees of freedom, u and u′. Equal

time steps of 10−4 [s] were considered in the numerical integration,

which was implemented using MATLAB’s ode113 solver [67]. The

wavenumber has been recorded by observing the wavelength

after one period of temporal oscillation of the tip (i.e., excitation

point) of the rod, and plotted as a function of frequency ω̂ for

two given amplitudes. This recording is meaningful because the

wave’s harmonic form is effectively still maintained during the

first oscillation cycle in the vicinity of the excitation point. The

data points from this simulation (of a finite rod) match very well

with the analytically derived exact dispersion curve (corresponding

to an infinite rod). While the wave considered at the tip of the

excited rod will evolve, under finite strain, into a complex form as
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it propagates into the rod, this correlation provides a validation that

a given harmonic wave will locally and instantaneously disperse in

a manner exactly as described by Eq. (1.49). The other simulation

data shown in the figure correspond to the response due to initial

sinusoidal displacements at a prescribed wavenumber (applied

when the rod is in a state of rest). Here we measure the frequency

of the oscillations as the wave propagates within the first temporal

cycle. The simulation parameters are the same to those in the initial

end-point prescribed displacement runs. As illustrated in the figure,

this simulation further validates the analytical dispersion relation

given by Eq. (1.49).

1.4.2 Finite-Strain Waves in 1D Phononic Materials

The transfer matrix method presented in Section 1.2.2 can be used

to obtain an approximate dispersion relation for a 1D phononic

crystal under finite deformation. The approximation arises in the

construction of the transfer matrix which is based on a linear strain-

displacement relationship [see Eqs. (1.2) and (1.7)]. The application

of the technique for this problem is similar to its application to the

damped 1D phononic crystal problem presented in Section 1.3.2,

with the only differences being the definition of the Z ( j) function (for

which we now use the undamped form) and the κ ( j)(ω∝) function

(where ∝ = d in the damping problem and ∝ = fin in the finite

deformation problem). For a 1D damped phononic material, the

former function is given in Eq. (1.26). Now we seek a similar function

for wave motion under finite deformation in layer j .

First we rewrite Eq. (1.49) explicitly for layer j ,

ωfin = c( j)κ ( j)

√
2 + 3Bκ ( j) + [Bκ ( j)]2

2
, (1.51)

which may be cast as the following 4th order characteristic equation:

[κ ( j)]2(1 + Bκ ( j))(2 + Bκ ( j)) − 2
ω2

fin[
c( j)

]2
= 0. (1.52)

Solving Eq. (1.52) gives

κ
( j)
1,2 = 1

12B

(
−9 + P ( j) ∓

√
Q ( j) − R( j)

)
, (1.53a)
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κ
( j)
3,4 = − 1

12B

(
9 + P ( j) ±

√
Q ( j) + R( j)

)
, (1.53b)

where

P ( j) =

√√√√33c( j) A( j) + 12
(

− 24B2ω2
fin + 4

[
c( j)

]2 + [
A( j)

]2
)2

c( j) A( j)
,

(1.54a)

Q ( j) =
66c( j) A( j) − 48

(
−6B2ω2

fin + [
c( j)

]2
)

− 12
[

A( j)
]2

c( j) A( j)
,

(1.54b)

R( j) = 54
√

3√√√√11c( j)
0 A( j) + 4

(
−24B2ω2

fin + 4
[
c( j)

]2 + [
A( j)

]2
)

c( j) A( j)

(1.54c)

and

A( j) =
(

− 99B2ω2
finc( j) + 8

[
c( j)

]3

+3Bωfin

√(
1536B2 + 321

[
c( j)

]2
)

B2ω4
fin − 48

[
c( j)

]4

)1/3

.

(1.54d)

Now we will use Eq. (1.53) and the transfer matrix method to

obtain an approximation of the finite strain dispersion curves of a

1D phononic crystal that has the same geometric features as the

periodic bi-material rod in Fig. 1.1 and the following ratio of material

properties: c(2)/c(1) = 2 and ρ(2)/ρ(1) = 3. As in the damped

1D phononic crystal example, we consider a bi-layered unit cell in

which d(1) = d(2). In Fig. 1.4, we show these results for a value

of wave amplitude of B = 0.125. Superimposed, for comparison,

are the dispersion curves on the basis of infinitesimal deformation

and the corresponding dispersion curves for an equivalent statically

homogenized medium (for which the elastic properties are obtained

by the standard rule of mixtures). We observe in the figure

that the finite-strain dispersion curves asymptotically converge

to the infinitesimal and homogenized curves at long wavelengths
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Figure 1.4 Approximate frequency band structure for a 1D phononic

crystal under finite deformation [obtained using Eq. (1.53)]. The results

shown are for B = 0.125. For comparison, the dispersion curves for

infinitesimal deformation are included. Also, corresponding dispersion

curves for a statically equivalent homogenous rod are overlaid.

as expected. We also note that the finite deformation causes

the dispersion branches to rise and the band gaps to increase

significantly — an attractive trait for many applications involving

sound and vibration control.
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